

Electron Microscopy

NanoDefine Workshop April 24th 2015 Vienna

Ralf Kaegi

- General Introduction
- Resolution
- Instruments
- Lenses
- Elemental analyses

Electron microscopy can resolve structures, spatial arrangements from the **mm** down to the **nano**-scale

However, as stated by Hayes (in Williams and Carter, 1996): When we this image we laugh (because we understand its true nature in 3D)...

... but when we see equivalent (but more misleading) images in the TEM, we publish!

Current resolution limits

first electron microscope: Knoll and Ruska (1932)

Prototype of the first Stereoscan (Cambridge Instruments Company).

The increase in resolution

Resolution limit

The **Rayleigh criterion** is the generally accepted criterion for the minimum resolvable detail - the imaging process is said to be diffraction-limited when the first diffraction minimum of the image of one source point coincides with the maximum of another (Figure 3) (<u>http://hyperphysics.phy-astr.gsu.edu/Hbase/phyopt/Raylei.html</u>).

$$d = 0.61 \cdot \frac{\lambda}{n \cdot \sin \alpha}$$

 $n \times \sin \alpha$: numerical aperture. d= resolution, λ = wavelength, n=refractive index, α =angular aperture.

Typical EM: α 10mrad

Limits of resolution of different, optical systems'

Eye	0.1 mm
Light microscope (white	0.2 μm
light)	
UV-microscope	0.1 μm
SEM	1 nm
TEM	0.1 nm

Wavelength of electrons (λ)

The Instruments

Light vs. electron microscope

Electron microscope

Optical microscope

Different imaging modes in the TEM

Interaction of the electron beam with the specimen (focused beam, SEM (STEM))

Lenses

General definition

Lens imperfections -> Aberrations

In <u>optics</u>, a *circle of confusion*, (also known as *disk of confusion, circle of indistinctness, blur circle*, etc.), is an optical spot caused by a cone of light <u>rays</u> from a lens not coming to a perfect <u>focus</u> when imaging a point source (http://en.wikipedia.org/wiki/Circle_of_confusion

A point will not be transformed into a point but into a disk of finite size. The size / diameter of the disk determines the practical resolution of the EM.

Impossible solution for as EM lenses 'can' only focus

Spherical aberration (C_s)

With increasing β , the electron a more strongly focused resulting in a decreased focal length of the lens. C_s is always positive for cylindrical, symmetric EM lenses

Blurring of Airy disc cause by spherical aberration

Chromatic aberration (C_c)

r_{chr}

Electron with lower energies are stronger scattered by the lens -> focal length decreases. Inelastic scattering processes result in an energy loss of the incoming e⁻. -> **samples thickness** impacts the chromatic aberration of the transmitted e-beam

ß

Astigmatism

Astigmatism is when an optical system has different foci for rays (electrons) that propagate in two perpendicular planes

 Δf = difference in focus caused by the astigmatism.

$$r_{th} = 0.61 \cdot \frac{\lambda}{\beta}$$

The **Rayleigh criterion** is the generally accepted criterion for the minimum resolvable detail - the imaging process is said to be diffraction-limited when the first diffraction minimum of the image of one source point coincides with the maximum of another (Figure 3) (<u>http://hyperphysics.phy-</u> astr.gsu.edu/Hbase/phyopt/Raylei.html).

Practical resolution (Cs limited)

After correcting of the astigmatism and with a thin sample the practical resolution is determined by the diffraction and the spherical aberration.

$$\frac{dr(\beta)}{d\beta} = 0 = -2 \cdot \frac{(0.61 \cdot \lambda)^2}{\beta^3} + 6 \cdot C_s^2 \cdot \beta^5$$

 $0.91 \cdot \left(C_s \lambda^3\right)^{\frac{1}{4}}$

Specimen limited resolution (Cc limited)

$$r_{chr} = C_c \cdot \frac{\Delta E}{E} \beta$$

Due to inelastic interactions of the primary electron beam with the specimen, the primary electrons loose a fraction of their energy (typically ~20 eV (Plasmon)).

$$\Delta E = 20 \text{ eV}, E = 100 \text{ keV}, \beta_{\text{opt}} = 4.5 \text{ mrads}$$

Elemental analysis in the EM

Electron energy loss spectroscopy (EELS) Energy filtered TEM (TEM)

STEM spectral imaging vs. EFTEM spectral imaging

22

http://www.globalsino.com/EM/page4619.html

Spatial resolution ~ 1nm Detection limit ~ 2 - 5 % local atomic concentration

Energy dispersive x-ray (EDX) analysis

Books:

- Barry C. Carter and David B. Williams, Transmission Electron Microscopy, A Textbook for Materials Science, 2009 (<u>http://www.matter.org.uk/tem/</u>)
- Michael J.R. Goldstein et al., Scanning Electron Microscopy and X-ray Microanalysis, 2003
- Debbie J. Stokes, Principles and Practice of Variable Pressure/Environmental Scanning Electron Microscopy (VP-ESEM), 2008
- Ray F. Egerton, Physical Principles of Electron Microscopy, 2007
- P.F. Schmidt, Praxis der Rasterelektronenmikroskopie und Mikrobereichsanalyse Expert-Verlag, 1994 (Kontakt & Studium ; 444 : Meßtechnik)

Links:

http://www.ammrf.org.au/myscope/

http://www.globalsino.com/EM/

http://tx.technion.ac.il/~mtyaron/TEMcourse_flash/ (Jaron Kauffmann)

http://www.ccmr.cornell.edu/igert/modular/docs/3_Scanning_Electron_Microscopy.pdf http://nanohub.org/resources/4092

www.NanoDefine.eu

This project has received funding from the European Union's Seventh Programme for research, technological development and demonstration under grant agreement No 604347

